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chapter 4: Sea Floor Spreading and Transform Faults
4.1 Sea Floor Spreading

Introduction
This chapter bridges continental drift and plate tectonics, showing how oceanic crust forms
and moves, while transform faults define plate boundaries.
By the 1950s, evidence for continental drift was strong, but the mechanism remained
unclear.
Focus shifted from continents to ocean basins, studied via marine geophysics (e.g.,
magnetic surveys).

*Magnetic anomalies revealed unexpected patterns: linear stripes parallel to mid-ocean
ridges, offset by fracture zones.

Marine Magnetic Anomalies

*Surveys (e.g., Mason & Raff, 1961) showed magnetic lineations: alternating high/low
magnetic intensity stripes. Source: Oceanic Layer 2 (basaltic crust), magnetized
differently in adjacent blocks due to geomagnetic reversals. Example: Juan de Fuca
Ridge anomalies modeled with normal/reversed magnetization blocks.
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Magnetic anomaly lineation in
the northeastern Pacific
Ocean. Positive anomalies in
black; also shown are the
oceanic fracture zones at
which the lineation are offset
(after Menard, 1964, with
permission from the estate of
the late Professor H. William
Menard).
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Interpretation of a magnetic anomaly profile across the Juan de Fuca ridge, northeastern
Pacific Ocean, in terms of normal and reversed magnetizations of two-dimensional
rectangular blocks of oceanic layer 2. The arrow marks the ridge crest (redrawn from Bott,

1967, with permission Blackwell Publishing).




Geomagnetic Reversals

*Earth’s magnetic field reverses polarity over ~5,000 years, with field strength dropping
to 25% before recovering.

*Geodynamo Theory: Field generated by convection in the outer core (a self-sustaining
"dynamo" driven by heat/rotation).

*Reversal frequency varies: Cretaceous Normal Superchron: No reversals for 35 Ma.
Cenozoic: Increasing reversal rate. Core-mantle boundary heat flux may influence
reversal patterns.

Sea Floor Spreading Hypothesis
*Proposed by Dietz (1961) and Hess (1962): New lithosphere forms at mid-ocean

ridges via upwelling magma. Continents drift apart as oceans widen; old lithosphere is
subducted at trenches. Driven by mantle convection
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Estimated frequency of geomagnetic reversals over the past 160 Ma (redrawn from
Merrill et al., 1996, with permission from Academic Press. Copyright Elsevier 1996).



Vine-Matthews Hypothesis (1963)
*Combined sea floor spreading with geomagnetic reversals: Magma at ridges cools below

the Curie point, recording Earth’s magnetic field. Reversals create

alternating normal/reversed magnetization stripes. Mid-ocean ridges act as "tape
recorders" of geomagnetic history. Anomaly shape varies with latitude (steep dips at poles,

horizontal at equator) and ridge orientation.

Magnetostratigraphy

*Reversal timescale developed using: Lava flows (dated via K-Ar) and deep-sea cores
(microfossil stratigraphy). Key chrons: Brunhes (normal), Matuyama (reversed), Gauss
(normal), Gilbert (reversed). Spreading rates calculated by matching anomaly patterns to

the timescale. Example: South Atlantic spreads at ~20 mm/yr.
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Sea floor spreading and the generation of magnetic lineation by the Vine-Matthews

hypothesis (redrawn from Bott, 1982, by permission of Edward Arnold
(Publishers) Ltd).
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Variation of the magnetic anomaly pattern
with geomagnetic latitude. All profiles
are north-south. Angles refer to magnetic

inclination. No vertical exaggeration.

Variation of the magnetic anomaly pattern
with the direction of the profile at a fixed

latitude. Magnetic inclination is 45° in all

cases. No vertical exaggeration.
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Plio-Pleistocene (modified from Cande
and Kent, 1992, by permission of the
American Geophysical Union. Copyright
©1992 American Geophysical Union).
Numerical chrons are based on the
numbered sequence of marine magnetic
anomalies.
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Magnetic anomaly profiles and models of several spreading centers in terms of the reversal
timescale (redrawn from Vine, 1966, Science 154, 1405-15, with permission from the AAAS).
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Magnetic anomaly profile and model over the southern Mid-Atlantic Ridge (redrawn
from Heirtzler et al., 1968, by permission of the American Geophysical Union.
Copyright © 1968 American Geophysical Union).




Dating the Ocean Floor

Magnetic lineations mapped as isochrons (lines of equal age). Oldest oceanic
crust: Jurassic (~160 Ma). Cretaceous Quiet Zone: No reversals (superchron).
Reconstructions show ocean basin evolution (e.g., North Atlantic opening).
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refer to magnetic anomaly numbers (redrawn from Heirtzler et al., 1968, by permission of the
American Geophysical Union. Copyright © 1968 American Geophysical Union).
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Transform Faults

Transform faults accommodate lateral motion between lithospheric plates. Differ
from transcurrent faults: Transform faults end at ridges/trenches; displacement is

localized between offsets. Example: Mendocino Fracture Zone (NE Pacific) offsets
anomalies by 1,450 km.

Comparison of transform and transcurrent faults.

Dextral Sinistral

(a) Transicrm fault (b) Transcurrent fault



Ridge-Ridge Transform Faults
*Wilson (1965) identified 6 types (e.g., ridge-to-ridge, ridge-to-trench).

*Sykes (1967) confirmed transform motion via earthquake focal mechanisms

« Strike-slip earthquakes occur only between ridge segments (dextral motion).

« Beyond ridges, fracture zones are inactive.
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mountain arc

d = down; u = up
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Epicenters of earthquakes that occurred on the Mid-Atlantic ridge in the equatorial Atlantic
between 1955 and 1965. The arrows beside four of the earthquakes indicate the sense of shear
and the strike of the fault plane inferred from focal mechanism solutions (modified from Sykes,
1967, by permission of the American Geophysical Union. Copyright © 1967 American

Geophysical Union).
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Ridge Jumps and Offsets
Ridge jumps: Sudden relocations of spreading centers (e.g., South Atlantic, 98-59 Ma).
Examples: Murray Fracture Zone: Offset reduced by 500 km after a jump. Iceland:

Ridge jumps modified North Atlantic geometry. Rare but significant: Most changes

occur via spreading direction shifts or ridge propagation.

Key Concepts:

1.Sea Floor Spreading: Oceanic crust forms at ridges, recording geomagnetic reversals as
symmetric stripes.

2.Vine-Matthews Hypothesis: Links magnetic anomalies to spreading and reversals.
3.Geomagnetic Reversals: Driven by core dynamo; frequency varies over geologic time.

4. Transform Faults: Plate boundaries where motion is strike-slip, ending at
ridges/trenches.

5.0cean Floor Age: Dated via magnetostratigraphy; oldest crust is Jurassic.



